Newer
Older
Genome mapping files for _Mus musculus domesticus GER_, _Mus musculus domesticus FRA_, _Mus musculus domesticus IRA_, _Mus musculus musculus AFG_, _Mus musculus castaneus CAS_ and _Mus spretus SPRE_ were obtained from <http://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/m_m_domesticus/genomes_bam/>, <http://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/m_m_musculus/genomes_bam/>, <http://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/m_m_castaneus/genomes_bam/>, <http://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/m_spretus/genomes_bam/>.
For mapping details please look into the original publication ([Harr et al. 2016](http://www.nature.com/articles/sdata201675)) <http://www.nature.com/article-assets/npg/sdata/2016/sdata201675/extref/sdata201675-s7.docx>.
## Get masking regions for individual samples and natural populations
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
For masking genomic regions in natural populations which showed low coverage based on the genomic mapping BAM files we only considered the stable chromosomes from the reference GRCm38 _mm10_ <http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/mouse/>.
The BAM files were processed with 'genomeCoverageBed' to obtain site specific genome coverage and further united with 'unionBedGraphs'. The per population combined coverage was further processed to only retain regions with a coverage smaller than 5 resulting as the masking regions.
genomeCoverageBed example for the population _Mus musculus musculus AFG_:
```
#example for populaton Mmm_AFG:
#
#used BAM files:
#
#AFG1_396.bam
#AFG2_413.bam
#AFG3_416.bam
#AFG4_424.bam
#AFG5_435.bam
#AFG6_444.bam
$REFERENCE=mm10.fasta
for file in *.bam; do genomeCoverageBed -ibam $file -bga -g $REFFERENCE > $file".bga";done
```
unionBedGraphs example for the population _Mus musculus musculus AFG_:
```
INPUT1=AFG1_396.bam.bga
INPUT2=AFG2_413.bam.bga
INPUT3=AFG3_416.bam.bga
INPUT4=AFG4_424.bam.bga
INPUT5=AFG5_435.bam.bga
INPUT6=AFG6_444.bam.bga
OUTPUT=Mmm_AFG.combined.bga
unionBedGraphs -i $INPUT1 $INPUT2 $INPUT3 $INPUT4 $INPUT5 $INPUT6 | awk -v OFS='\t' 'BEGIN {sum=0} {for (i=4: i<=NF; i++) sum+=$1; print $1,$2,$3,sum; sum=0}' > $OUTPUT
```
get masking region example for the population _Mus musculus musculus AFG_:
```
INPUT=Mmm_AFG.combined.bga
OUTPUT=Mmm_AFG.combined.bga.stcov5
awk '{if($4<5) print $0}' $INPUT > $INPUT".stcov5"
bedtools merge -i $INPUT".stcov5" > $INPUT".stcov5.merge"
awk -v OFS='\t' '{print $1,$2,$3,4}' $INPUT".stcov5.merge" > $OUTPUT
```
+ bedtools v2.24.0 <http://bedtools.readthedocs.io/en/latest/>
+ awk
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
For SNP and INDEL calling the BAM files were processed with 'samtools mpileup' and 'bcftools call' with relaxed quality options to retain information in CNV regions.
Due to the amount of data first mpileup files were generated for each BAM file and merged with 'bcftools merge'. After merging mpileup files, 'bcftools call' was used to generate the final VCF file.
samtools mpileup | bcftools call example for the population _Mus musculus musculus AFG_:
```
#example for population Mmm_AFG:
#
#used BAM files:
#
#AFG1_396.bam
#AFG2_413.bam
#AFG3_416.bam
#AFG4_424.bam
#AFG5_435.bam
#AFG6_444.bam
#generating indiviual mpileup files for each BAM file
$REFERENCE=mm10.fasta
INPUT1=AFG1_396.bam
INPUT2=AFG2_413.bam
INPUT3=AFG3_416.bam
INPUT4=AFG4_424.bam
INPUT5=AFG5_435.bam
INPUT6=AFG6_444.bam
samtools mpileup -q 0 -Q 10 -A -d 99999 -t DP,AD,ADF,ADR -vf $REFERENCE -o $INPUT1".mpileup.q0Q10.vcf" $INPUT1
samtools mpileup -q 0 -Q 10 -A -d 99999 -t DP,AD,ADF,ADR -vf $REFERENCE -o $INPUT2".mpileup.q0Q10.vcf" $INPUT2
samtools mpileup -q 0 -Q 10 -A -d 99999 -t DP,AD,ADF,ADR -vf $REFERENCE -o $INPUT3".mpileup.q0Q10.vcf" $INPUT3
samtools mpileup -q 0 -Q 10 -A -d 99999 -t DP,AD,ADF,ADR -vf $REFERENCE -o $INPUT4".mpileup.q0Q10.vcf" $INPUT4
samtools mpileup -q 0 -Q 10 -A -d 99999 -t DP,AD,ADF,ADR -vf $REFERENCE -o $INPUT5".mpileup.q0Q10.vcf" $INPUT5
samtools mpileup -q 0 -Q 10 -A -d 99999 -t DP,AD,ADF,ADR -vf $REFERENCE -o $INPUT6".mpileup.q0Q10.vcf" $INPUT6
bgzip $INPUT1".mpileup.q0Q10.vcf"
bgzip $INPUT2".mpileup.q0Q10.vcf"
bgzip $INPUT3".mpileup.q0Q10.vcf"
bgzip $INPUT4".mpileup.q0Q10.vcf"
bgzip $INPUT5".mpileup.q0Q10.vcf"
bgzip $INPUT6".mpileup.q0Q10.vcf"
tabix $INPUT1".mpileup.q0Q10.vcf.gz"
tabix $INPUT2".mpileup.q0Q10.vcf.gz"
tabix $INPUT3".mpileup.q0Q10.vcf.gz"
tabix $INPUT4".mpileup.q0Q10.vcf.gz"
tabix $INPUT5".mpileup.q0Q10.vcf.gz"
tabix $INPUT6".mpileup.q0Q10.vcf.gz"
#merge individual mpileup files
MPILEUPLIST=AFG.mpileup.list
echo $INPUT1".mpileup.q0Q10.vcf.gz" >> $MPILEUPLIST
echo $INPUT2".mpileup.q0Q10.vcf.gz" >> $MPILEUPLIST
echo $INPUT3".mpileup.q0Q10.vcf.gz" >> $MPILEUPLIST
echo $INPUT4".mpileup.q0Q10.vcf.gz" >> $MPILEUPLIST
echo $INPUT5".mpileup.q0Q10.vcf.gz" >> $MPILEUPLIST
echo $INPUT6".mpileup.q0Q10.vcf.gz" >> $MPILEUPLIST
MPILEUPOUTPUT=AFG.mpileup.q0Q10.vcf.gz
bcftools merge -m all -O z -o $MPILEUPOUTPUT -l $MPILEUPLIST
#call SNP and INDEL
OUTPUT=AFG.mpileup.q0Q10.bcfcall.mv.vcf.gz
bcftools call -O z -f GQ -m -v -o $OUTPUT $MPILEUPOUTPUT
```
+ samtools 1.3.1-36-g613501f (using htslib 1.3.1-59-g0f2a88a)
+ bcftools 1.3.1-39-gd797e86 (using htslib 1.3.1-59-g0f2a88a)
+ bgzip v1.3
+ tabix v1.3
## K80 distance calculation
### Get population specific SNPs
### Calculate population specific Consensus sequence
### Calculate K80 distance between populations
## Dxy distance calculation
### Calculate Dxy distance between populations
### Calculate Dxy distance between individuals and populations