# Scripts for the Publication: Ullrich KK, Tautz D ## Data sources Genome mapping files for _Mus musculus domesticus GER_, _Mus musculus domesticus FRA_, _Mus musculus domesticus IRA_, _Mus musculus musculus AFG_, _Mus musculus castaneus CAS_ and _Mus spretus SPRE_ were obtained from <http://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/m_m_domesticus/genomes_bam/>, <http://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/m_m_musculus/genomes_bam/>, <http://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/m_m_castaneus/genomes_bam/>, <http://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/m_spretus/genomes_bam/>. For mapping details please look into the original publication ([Harr et al. 2016](http://www.nature.com/articles/sdata201675)) <http://www.nature.com/article-assets/npg/sdata/2016/sdata201675/extref/sdata201675-s7.docx>. ## Get masking regions for individual samples and natural populations For masking genomic regions in natural populations which showed low coverage based on the genomic mapping BAM files we only considered the stable chromosomes from the reference GRCm38 _mm10_ <http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/mouse/>. The BAM files were processed with 'genomeCoverageBed' to obtain site specific genome coverage and further united with 'unionBedGraphs'. The per population combined coverage was further processed to only retain regions with a coverage smaller than 5 resulting as the masking regions. genomeCoverageBed example for the population _Mus musculus musculus AFG_: ``` #example for populaton Mmm_AFG: # #used BAM files: # #AFG1_396.bam #AFG2_413.bam #AFG3_416.bam #AFG4_424.bam #AFG5_435.bam #AFG6_444.bam $REFERENCE=mm10.fasta for file in *.bam; do genomeCoverageBed -ibam $file -bga -g $REFFERENCE > $file".bga";done ``` unionBedGraphs example for the population _Mus musculus musculus AFG_: ``` INPUT1=AFG1_396.bam.bga INPUT2=AFG2_413.bam.bga INPUT3=AFG3_416.bam.bga INPUT4=AFG4_424.bam.bga INPUT5=AFG5_435.bam.bga INPUT6=AFG6_444.bam.bga OUTPUT=Mmm_AFG.combined.bga unionBedGraphs -i $INPUT1 $INPUT2 $INPUT3 $INPUT4 $INPUT5 $INPUT6 | awk -v OFS='\t' 'BEGIN {sum=0} {for (i=4: i<=NF; i++) sum+=$1; print $1,$2,$3,sum; sum=0}' > $OUTPUT ``` get masking region example for the population _Mus musculus musculus AFG_: ``` INPUT=Mmm_AFG.combined.bga OUTPUT=Mmm_AFG.combined.bga.stcov5 awk '{if($4<5) print $0}' $INPUT > $INPUT".stcov5" bedtools merge -i $INPUT".stcov5" > $INPUT".stcov5.merge" awk -v OFS='\t' '{print $1,$2,$3,4}' $INPUT".stcov5.merge" > $OUTPUT ``` _used software:_ + bedtools v2.24.0 <http://bedtools.readthedocs.io/en/latest/> + awk ## SNP and INDEL calling For SNP and INDEL calling the BAM files were processed with 'samtools mpileup' and 'bcftools call' with relaxed quality options to retain information in CNV regions. Due to the amount of data first mpileup files were generated for each BAM file and merged with 'bcftools merge'. After merging mpileup files, 'bcftools call' was used to generate the final VCF file. samtools mpileup | bcftools call example for the population _Mus musculus musculus AFG_: ``` #example for population Mmm_AFG: # #used BAM files: # #AFG1_396.bam #AFG2_413.bam #AFG3_416.bam #AFG4_424.bam #AFG5_435.bam #AFG6_444.bam #generating indiviual mpileup files for each BAM file $REFERENCE=mm10.fasta INPUT1=AFG1_396.bam INPUT2=AFG2_413.bam INPUT3=AFG3_416.bam INPUT4=AFG4_424.bam INPUT5=AFG5_435.bam INPUT6=AFG6_444.bam samtools mpileup -q 0 -Q 10 -A -d 99999 -t DP,AD,ADF,ADR -vf $REFERENCE -o $INPUT1".mpileup.q0Q10.vcf" $INPUT1 samtools mpileup -q 0 -Q 10 -A -d 99999 -t DP,AD,ADF,ADR -vf $REFERENCE -o $INPUT2".mpileup.q0Q10.vcf" $INPUT2 samtools mpileup -q 0 -Q 10 -A -d 99999 -t DP,AD,ADF,ADR -vf $REFERENCE -o $INPUT3".mpileup.q0Q10.vcf" $INPUT3 samtools mpileup -q 0 -Q 10 -A -d 99999 -t DP,AD,ADF,ADR -vf $REFERENCE -o $INPUT4".mpileup.q0Q10.vcf" $INPUT4 samtools mpileup -q 0 -Q 10 -A -d 99999 -t DP,AD,ADF,ADR -vf $REFERENCE -o $INPUT5".mpileup.q0Q10.vcf" $INPUT5 samtools mpileup -q 0 -Q 10 -A -d 99999 -t DP,AD,ADF,ADR -vf $REFERENCE -o $INPUT6".mpileup.q0Q10.vcf" $INPUT6 bgzip $INPUT1".mpileup.q0Q10.vcf" bgzip $INPUT2".mpileup.q0Q10.vcf" bgzip $INPUT3".mpileup.q0Q10.vcf" bgzip $INPUT4".mpileup.q0Q10.vcf" bgzip $INPUT5".mpileup.q0Q10.vcf" bgzip $INPUT6".mpileup.q0Q10.vcf" tabix $INPUT1".mpileup.q0Q10.vcf.gz" tabix $INPUT2".mpileup.q0Q10.vcf.gz" tabix $INPUT3".mpileup.q0Q10.vcf.gz" tabix $INPUT4".mpileup.q0Q10.vcf.gz" tabix $INPUT5".mpileup.q0Q10.vcf.gz" tabix $INPUT6".mpileup.q0Q10.vcf.gz" #merge individual mpileup files MPILEUPLIST=AFG.mpileup.list echo $INPUT1".mpileup.q0Q10.vcf.gz" >> $MPILEUPLIST echo $INPUT2".mpileup.q0Q10.vcf.gz" >> $MPILEUPLIST echo $INPUT3".mpileup.q0Q10.vcf.gz" >> $MPILEUPLIST echo $INPUT4".mpileup.q0Q10.vcf.gz" >> $MPILEUPLIST echo $INPUT5".mpileup.q0Q10.vcf.gz" >> $MPILEUPLIST echo $INPUT6".mpileup.q0Q10.vcf.gz" >> $MPILEUPLIST MPILEUPOUTPUT=AFG.mpileup.q0Q10.vcf.gz bcftools merge -m all -O z -o $MPILEUPOUTPUT -l $MPILEUPLIST #call SNP and INDEL OUTPUT=AFG.mpileup.q0Q10.bcfcall.mv.vcf.gz bcftools call -O z -f GQ -m -v -o $OUTPUT $MPILEUPOUTPUT ``` _used software:_ + samtools 1.3.1-36-g613501f (using htslib 1.3.1-59-g0f2a88a) + bcftools 1.3.1-39-gd797e86 (using htslib 1.3.1-59-g0f2a88a) + bgzip v1.3 + tabix v1.3 ## K80 distance calculation ### Get population specific SNPs _used software:_ ### Calculate population specific Consensus sequence _used software:_ ### Calculate K80 distance between populations ## Dxy distance calculation ### Calculate Dxy distance between populations _used software:_ ### Calculate Dxy distance between individuals and populations _used software:_